Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra. | g−4 | h4 | g4 | g19 | g21 | g9 | g13 | g16 | g3 | g7 | g22 |
weight | 0 | 0 | 0 | ω1 | ω1 | ω2 | ω2 | ω2 | ω3 | ω3 | ω1+ω3 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −2ψ | 0 | 2ψ | ω1−ψ | ω1+ψ | ω2−2ψ | ω2 | ω2+2ψ | ω3−ψ | ω3+ψ | ω1+ω3 |
Isotypical components + highest weight | V−2ψ → (0, 0, 0, -2) | V0 → (0, 0, 0, 0) | V2ψ → (0, 0, 0, 2) | Vω1−ψ → (1, 0, 0, -1) | Vω1+ψ → (1, 0, 0, 1) | Vω2−2ψ → (0, 1, 0, -2) | Vω2 → (0, 1, 0, 0) | Vω2+2ψ → (0, 1, 0, 2) | Vω3−ψ → (0, 0, 1, -1) | Vω3+ψ → (0, 0, 1, 1) | Vω1+ω3 → (1, 0, 1, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | ω1 −ω1+ω2 −ω2+ω3 −ω3 | ω1 −ω1+ω2 −ω2+ω3 −ω3 | ω2 ω1−ω2+ω3 −ω1+ω3 ω1−ω3 −ω1+ω2−ω3 −ω2 | ω2 ω1−ω2+ω3 −ω1+ω3 ω1−ω3 −ω1+ω2−ω3 −ω2 | ω2 ω1−ω2+ω3 −ω1+ω3 ω1−ω3 −ω1+ω2−ω3 −ω2 | ω3 ω2−ω3 ω1−ω2 −ω1 | ω3 ω2−ω3 ω1−ω2 −ω1 | ω1+ω3 −ω1+ω2+ω3 ω1+ω2−ω3 −ω2+2ω3 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 ω1−2ω2+ω3 ω2−2ω3 −2ω1+ω2 −ω1−ω2+ω3 ω1−ω2−ω3 −ω1−ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −2ψ | 0 | 2ψ | ω1−ψ −ω1+ω2−ψ −ω2+ω3−ψ −ω3−ψ | ω1+ψ −ω1+ω2+ψ −ω2+ω3+ψ −ω3+ψ | ω2−2ψ ω1−ω2+ω3−2ψ −ω1+ω3−2ψ ω1−ω3−2ψ −ω1+ω2−ω3−2ψ −ω2−2ψ | ω2 ω1−ω2+ω3 −ω1+ω3 ω1−ω3 −ω1+ω2−ω3 −ω2 | ω2+2ψ ω1−ω2+ω3+2ψ −ω1+ω3+2ψ ω1−ω3+2ψ −ω1+ω2−ω3+2ψ −ω2+2ψ | ω3−ψ ω2−ω3−ψ ω1−ω2−ψ −ω1−ψ | ω3+ψ ω2−ω3+ψ ω1−ω2+ψ −ω1+ψ | ω1+ω3 −ω1+ω2+ω3 ω1+ω2−ω3 −ω2+2ω3 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 ω1−2ω2+ω3 ω2−2ω3 −2ω1+ω2 −ω1−ω2+ω3 ω1−ω2−ω3 −ω1−ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−2ψ | M0 | M2ψ | Mω1−ψ⊕M−ω2+ω3−ψ⊕M−ω1+ω2−ψ⊕M−ω3−ψ | Mω1+ψ⊕M−ω2+ω3+ψ⊕M−ω1+ω2+ψ⊕M−ω3+ψ | Mω1−ω2+ω3−2ψ⊕Mω2−2ψ⊕M−ω1+ω3−2ψ⊕Mω1−ω3−2ψ⊕M−ω2−2ψ⊕M−ω1+ω2−ω3−2ψ | Mω1−ω2+ω3⊕Mω2⊕M−ω1+ω3⊕Mω1−ω3⊕M−ω2⊕M−ω1+ω2−ω3 | Mω1−ω2+ω3+2ψ⊕Mω2+2ψ⊕M−ω1+ω3+2ψ⊕Mω1−ω3+2ψ⊕M−ω2+2ψ⊕M−ω1+ω2−ω3+2ψ | Mω3−ψ⊕Mω1−ω2−ψ⊕Mω2−ω3−ψ⊕M−ω1−ψ | Mω3+ψ⊕Mω1−ω2+ψ⊕Mω2−ω3+ψ⊕M−ω1+ψ | Mω1+ω3⊕M−ω2+2ω3⊕M−ω1+ω2+ω3⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕Mω1−2ω2+ω3⊕3M0⊕M−ω1+2ω2−ω3⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕Mω1−ω2−ω3⊕Mω2−2ω3⊕M−ω1−ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M−2ψ | M0 | M2ψ | Mω1−ψ⊕M−ω2+ω3−ψ⊕M−ω1+ω2−ψ⊕M−ω3−ψ | Mω1+ψ⊕M−ω2+ω3+ψ⊕M−ω1+ω2+ψ⊕M−ω3+ψ | Mω1−ω2+ω3−2ψ⊕Mω2−2ψ⊕M−ω1+ω3−2ψ⊕Mω1−ω3−2ψ⊕M−ω2−2ψ⊕M−ω1+ω2−ω3−2ψ | Mω1−ω2+ω3⊕Mω2⊕M−ω1+ω3⊕Mω1−ω3⊕M−ω2⊕M−ω1+ω2−ω3 | Mω1−ω2+ω3+2ψ⊕Mω2+2ψ⊕M−ω1+ω3+2ψ⊕Mω1−ω3+2ψ⊕M−ω2+2ψ⊕M−ω1+ω2−ω3+2ψ | Mω3−ψ⊕Mω1−ω2−ψ⊕Mω2−ω3−ψ⊕M−ω1−ψ | Mω3+ψ⊕Mω1−ω2+ψ⊕Mω2−ω3+ψ⊕M−ω1+ψ | Mω1+ω3⊕M−ω2+2ω3⊕M−ω1+ω2+ω3⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕Mω1−2ω2+ω3⊕3M0⊕M−ω1+2ω2−ω3⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕Mω1−ω2−ω3⊕Mω2−2ω3⊕M−ω1−ω3 |