Processing math: 100%
Subalgebra A13F14
49 out of 59
Computations done by the calculator project.

Subalgebra type: A13 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A12 .
Centralizer: A21 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A13
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A13+A21 .

Elements Cartan subalgebra scaled to act by two by components: A13: (2, 3, 4, 2): 2, (-1, 0, 0, 0): 2, (0, -1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 15.
Negative simple generators: g24, g1, g2
Positive simple generators: g24, g1, g2
Cartan symmetric matrix: (210121012)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (210121012)
Decomposition of ambient Lie algebra: Vω1+ω32Vω33Vω22Vω13V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω2+2ψV2ψVω3+ψVω1+ψVω1+ω3Vω2V0Vω3ψVω1ψVω22ψV2ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra.g4h4g4g19g21g9g13g16g3g7g22
weight000ω1ω1ω2ω2ω2ω3ω3ω1+ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 2ψ02ψω1ψω1+ψω22ψω2ω2+2ψω3ψω3+ψω1+ω3
Isotypic module decomposition over primal subalgebra (total 11 isotypic components).
Isotypical components + highest weightV2ψ → (0, 0, 0, -2)V0 → (0, 0, 0, 0)V2ψ → (0, 0, 0, 2)Vω1ψ → (1, 0, 0, -1)Vω1+ψ → (1, 0, 0, 1)Vω22ψ → (0, 1, 0, -2)Vω2 → (0, 1, 0, 0)Vω2+2ψ → (0, 1, 0, 2)Vω3ψ → (0, 0, 1, -1)Vω3+ψ → (0, 0, 1, 1)Vω1+ω3 → (1, 0, 1, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g4
Cartan of centralizer component.
h4
g4
g19
g12
g10
g7
g21
g8
g6
g3
g9
g11
g20
g14
g18
g16
g13
g15
g17
g17
g15
g13
g16
g18
g14
g20
g11
g9
g3
g6
g8
g21
g7
g10
g12
g19
Semisimple subalgebra component.
g22
g5
g23
g2
g1
g24
h2
h1
2h4+4h3+3h2+2h1
g1
2g2
g24
g23
g5
g22
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above000ω1
ω1+ω2
ω2+ω3
ω3
ω1
ω1+ω2
ω2+ω3
ω3
ω2
ω1ω2+ω3
ω1+ω3
ω1ω3
ω1+ω2ω3
ω2
ω2
ω1ω2+ω3
ω1+ω3
ω1ω3
ω1+ω2ω3
ω2
ω2
ω1ω2+ω3
ω1+ω3
ω1ω3
ω1+ω2ω3
ω2
ω3
ω2ω3
ω1ω2
ω1
ω3
ω2ω3
ω1ω2
ω1
ω1+ω3
ω1+ω2+ω3
ω1+ω2ω3
ω2+2ω3
ω1+2ω2ω3
2ω1ω2
0
0
0
ω12ω2+ω3
ω22ω3
2ω1+ω2
ω1ω2+ω3
ω1ω2ω3
ω1ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ψ02ψω1ψ
ω1+ω2ψ
ω2+ω3ψ
ω3ψ
ω1+ψ
ω1+ω2+ψ
ω2+ω3+ψ
ω3+ψ
ω22ψ
ω1ω2+ω32ψ
ω1+ω32ψ
ω1ω32ψ
ω1+ω2ω32ψ
ω22ψ
ω2
ω1ω2+ω3
ω1+ω3
ω1ω3
ω1+ω2ω3
ω2
ω2+2ψ
ω1ω2+ω3+2ψ
ω1+ω3+2ψ
ω1ω3+2ψ
ω1+ω2ω3+2ψ
ω2+2ψ
ω3ψ
ω2ω3ψ
ω1ω2ψ
ω1ψ
ω3+ψ
ω2ω3+ψ
ω1ω2+ψ
ω1+ψ
ω1+ω3
ω1+ω2+ω3
ω1+ω2ω3
ω2+2ω3
ω1+2ω2ω3
2ω1ω2
0
0
0
ω12ω2+ω3
ω22ω3
2ω1+ω2
ω1ω2+ω3
ω1ω2ω3
ω1ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ψM0M2ψMω1ψMω2+ω3ψMω1+ω2ψMω3ψMω1+ψMω2+ω3+ψMω1+ω2+ψMω3+ψMω1ω2+ω32ψMω22ψMω1+ω32ψMω1ω32ψMω22ψMω1+ω2ω32ψMω1ω2+ω3Mω2Mω1+ω3Mω1ω3Mω2Mω1+ω2ω3Mω1ω2+ω3+2ψMω2+2ψMω1+ω3+2ψMω1ω3+2ψMω2+2ψMω1+ω2ω3+2ψMω3ψMω1ω2ψMω2ω3ψMω1ψMω3+ψMω1ω2+ψMω2ω3+ψMω1+ψMω1+ω3Mω2+2ω3Mω1+ω2+ω3M2ω1ω2Mω1+ω2ω3Mω12ω2+ω33M0Mω1+2ω2ω3Mω1ω2+ω3M2ω1+ω2Mω1ω2ω3Mω22ω3Mω1ω3
Isotypic characterM2ψM0M2ψMω1ψMω2+ω3ψMω1+ω2ψMω3ψMω1+ψMω2+ω3+ψMω1+ω2+ψMω3+ψMω1ω2+ω32ψMω22ψMω1+ω32ψMω1ω32ψMω22ψMω1+ω2ω32ψMω1ω2+ω3Mω2Mω1+ω3Mω1ω3Mω2Mω1+ω2ω3Mω1ω2+ω3+2ψMω2+2ψMω1+ω3+2ψMω1ω3+2ψMω2+2ψMω1+ω2ω3+2ψMω3ψMω1ω2ψMω2ω3ψMω1ψMω3+ψMω1ω2+ψMω2ω3+ψMω1+ψMω1+ω3Mω2+2ω3Mω1+ω2+ω3M2ω1ω2Mω1+ω2ω3Mω12ω2+ω33M0Mω1+2ω2ω3Mω1ω2+ω3M2ω1+ω2Mω1ω2ω3Mω22ω3Mω1ω3

Semisimple subalgebra: W_{11}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00): (275.00, 350.00)
1: (0.00, 1.00, 0.00, 0.00): (250.00, 400.00)
2: (0.00, 0.00, 1.00, 0.00): (225.00, 350.00)
3: (0.00, 0.00, 0.00, 1.00): (200.00, 300.00)



Made total 444 arithmetic operations while solving the Serre relations polynomial system.